
International Journal of Multiphase Flow 36 (2010) 599–607
Contents lists available at ScienceDirect

International Journal of Multiphase Flow

journal homepage: www.elsevier .com/ locate / i jmulflow
Multiphase flow in the vascular system of wood: From microscopic exploration
to 3-D Lattice Boltzmann experiments

X. Frank a,*, G. Almeida b, P. Perré c

a INRA, UMR 1092 LERFOB, F-54042 Nancy cedex, France
b USP, ESALQ (Luiz de Queiroz College of Agriculture), Brazil
c AgroParisTech, UMR 1092 LERFOB, ENGREF 14, rue Girardet F-54042 Nancy cedex, France

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 February 2010
Received in revised form 22 April 2010
Accepted 24 April 2010
Available online 7 May 2010

Keywords:
Multiphase
Wood
3D modelling
Image processing
Lattice Boltzmann
Vascular
Morphology
0301-9322/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.ijmultiphaseflow.2010.04.006

* Corresponding author.
E-mail address: xfrank@nancy-engref.inra.fr (X. Fr
This paper provides insights into liquid free water dynamics in wood vessels based on Lattice Boltzmann
experiments. The anatomy of real wood samples was reconstructed from systematic 3-D analyses of the
vessel contours derived from successive microscopic images. This virtual vascular system was then used
to supply fluid–solid boundary conditions to a two-phase Lattice Boltzmann scheme and investigate cap-
illary invasion of this hydrophilic porous medium. Behavior of the liquid phase was strongly dependent
on anatomical features, especially vessel bifurcations and reconnections. Various parameters were exam-
ined in numerical experiments with ideal vessel bifurcations, to clarify our interpretation of these
features.
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1. Introduction

The xylem (wood) in trees is formed by the cambium. The role
of this meristem is to enlarge each stem produced by the apical
meristems. In living trees, the formation of wood provides
mechanical support, allows reorientation and provides a vascular
system, this latter differing between softwoods and hardwoods.
In softwood, the vascular system consists of tracheids which are
a few millimeters long and connected together by bordered pits.
These pits serve as valves which limit the extension of undesired
cavitation in the sap column. More precisely, the tracheids formed
during spring have thin cell walls, wide radial diameters and hence
a large lumen, and are more specifically involved in sap conduc-
tion. In hardwoods, the vascular system consists of tube-like ves-
sels, varying in length from a few centimeters to several meters
and formed by lines of cells known as vessel elements (Zimmer-
mann, 1983). The ends of these vessel elements are perforated.
Matching perforations between adjacent vessel elements provide
an open passage for the upward movement of raw sap in the tree
stem (Panshin and de Zeeuw, 1980). Hardwoods in which the ves-
sels are fairly uniform in size and relatively evenly distributed
throughout the growth ring are described as diffuse-porous woods.
Vessels can account for 7–50% of the wood volume, depending on
ll rights reserved.
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the species. In most diffuse-porous hardwoods of temperate zones,
the vessel diameter varies from 20 lm to 100 lm. Air–water flow
is crucial in the living tree, as bubbles trapped within the vascular
system will have dramatic consequences on permeability and the
efficiency of sap transport from roots to leaves. Wood is a hygro-
scopic porous medium, which means that within it water can exist
in three different forms: bound water in the cell walls, free water
and water vapor in the cell lumens. However, the diffusion of
bound water occurs so slowly (Siau, 1984; Agoua et al., 2001) that
fluid migration in wood can be considered as limited to mono- or
multiphase flow in the vascular system.

As the anatomy of wood is highly complex, the fluid migration
properties (permeability, capillary pressure, relative permeability)
cannot be readily deduced from a simple geometrical representa-
tion of the vascular system. The situation is even more complex
in softwoods, due to the presence of bordered pits between the
tracheids. Although interesting models are available in the litera-
ture, they usually require considerable assumptions in order to
be operational (Comstock, 1970; Perré and Turner, 2001; Aumann
and Ford, 2002). The typical dual-scale mechanisms of fluid flow
occurring in softwoods (tracheids and bordered pits) explains
why some works have focused solely on fluid flow inside a single
bordered pit (Hacke et al., 2004; Valli et al., 2002).

The situation in hardwoods is slightly less complex, due to the
presence of specialized cells devoted to sap flow. At first sight,
the vascular system of hardwood species can be simply repre-
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sented as bundles of capillary tubes (Dullien, 1992). However, the
measured permeability values are systematically overestimated by
the theoretical permeability computed from anatomical images
using the Hagen–Poiseuille equation (Zimmermann, 1983; Siau,
1984; Perré and Karimi, 2002). Early investigations by Zimmer-
mann and collaborators (Zimmermann, 1983) in several hardwood
species revealed that the vessels did not run in parallel but chan-
ged their relative positions in the axial direction. For example, it
was shown that individual vessels in maple (Acer rubrum L.) and
poplar (Populus spp.) moved from one vessel cluster to another
and never really ended. They also observed that in many cases,
two or more vessels could run side by side over considerable dis-
tances. This implies that the water conducting units do not have
dead ends and water can pass from one vessel system into several
others through the pits and perforations. It is thus obvious that the
task of water-flow prediction is greatly complicated by the actual
pore morphology, namely the tortuosity and change in section
shape of the conductive elements, as well as the complex networks
resulting from their connection. The situation in which multiphase
flow occurs, such as cavitation during the tree’s lifespan or in the
drying of plant-derived material is even more complicated, requir-
ing evaluation of the propagation dynamics of the air–water
meniscus or, at the very least, partition of the liquid phase at
equilibrium.

The purpose of this paper was to address different multiphase
flow configurations by performing numerical experiments on
reconstructed morphologies derived from real wood samples. To
achieve this goal, two major difficulties were to be addressed: to
reconstruct the wood vessel anatomy in three dimensions from a
real wood sample, and to choose and implement a relevant numer-
ical approach.

Impressive tools are currently available in the field of non-
destructive testing. Micro-tomographic images obtained with a
synchrotron provide a sub-micrometric spatial resolution (down
to 200 nm). Such tools have been used to obtain a non-invasive in-
sight into wood structure (Trtik et al., 2007; Steppe et al., 2004).
One of the major drawbacks of micro-tomography, however, is
the acquisition time. This is why NMR imaging provides a powerful
complementary technique for non-invasive investigation of fluid
flow dynamics in porous media. Indeed, 3D images of one or more
fluid phase(s) are obtained in the case of NMR microscopy with a
relatively short acquisition time and a spatial resolution in the or-
der of 10 lm (Tyszka et al., 2005). Such a technique has been used,
for example, to assess the behavior of bordered pits in early and
late wood of Douglas fir during drainage (Almeida et al., 2008).

However, despite the existence of these amazing tools, to our
knowledge a comprehensive approach, from the real sample to
the simulation of multiphase flow in 3D morphology, has not yet
been proposed for wood. In the present work, a relatively simple,
low-cost experimental protocol was applied to reconstruct the
3D morphology of a real wood sample from images collected after
successive slicing of a sample with a sledge microtome. This proce-
dure, based on the construction of a 3D grid of points by vectorial
image processing, could in future be applied to any data set ob-
tained from NMR imaging or micro-tomography, despite its appar-
ent simplicity.

To complete the sample-to-simulation chain, several conditions
need to be satisfied when selecting an appropriate numerical
method. Firstly, complex gas–liquid interfacial dynamics, including
topological changes such as film ruptures and coalescence, will oc-
cur during computation. Secondly, the dynamic behavior of the
system will emerge as a result of competition between wetting
phenomena and viscous dissipation. In consequence, the fluid–so-
lid interactions need to be correctly implemented, despite the
complex geometrical features of wood vessels. Description of the
fluid/solid and liquid/vapor interfaces is particularly challenging.
Classical paradigms, such as front-tracking schemes (De Sousa
et al., 2004), volume-of-fluid models (Štěpánek and Rajniak,
2006) and level-set approaches (Tanguy and Berlemont, 2005),
give rise to huge computation loads when the system is large or
in the case of complex interfacial geometries. These difficulties
might be circumvented by using the seemingly attractive meshless
methods (Frank and Perré, 2010). Several alternative numerical
methods are available. In off-lattice approaches, the fluid is de-
scribed through moving point-like elements. For example, in the
context of smooth particle hydrodynamics (SPH) (Tartakovsky
et al., 2007), the Navier–Stokes equation is solved on Lagrangian
particles carrying macroscopic fluid properties and fields. In other
numerical methods, macroscopic features can emerge spontane-
ously from the initial assumptions. Dissipative particle dynamics
(DPD), a coarse-grained molecular dynamics approach, is part of
this elegant family (Henrich et al., 2007). The Lattice Boltzmann
(LB) scheme is another quite recent emergence-based mesoscale
numerical tool for fluid flow simulation (Succi, 2001). It can be con-
sidered as a special discretization of the well-known Boltzmann’s
equation, despite its later development, as compared to lattice
gas cellular automata (LGCA) (Hardy et al., 1976). The Lattice Boltz-
mann method has already proved its ability to simulate multiphase
flows in porous media (Hatiboglu and Babadagli, 2008). In the
present work, the latter was chosen as a satisfactory compromise
between the computational work and the size of the computed
domain.
2. Wood sample anatomy

2.1. Image acquisition and processing

The study was carried out on a 8-year-old White birch (Betula
verrucosa). The final cross section dimension of the chosen sample
was 3 mm (tangential) � 5 mm (radial) and 20 mm in length (lon-
gitudinal). This sample was fixed on a sledge microtome. A modu-
lar microscope (Nachet MS 98) equipped with long-focus lens and
a digital camera from Basler Vision Technologies (Fig. 1A) was fixed
on a support. The microtome chosen for this work had the advan-
tage of vertically displacing the sample between successive cuts,
thereby facilitating exploration of the vessel network. A microtome
section thickness of 20 lm (along the longitudinal direction) was
chosen for sample exploration and a digital image was taken every
40 lm. The images were stored in color (RGB, 8 bits per color) with
a spatial resolution of 1388 � 1038. The magnification lens used in
this work results in a pixel size of 1.3 lm. In all, 100 images were
analyzed resulting in a depth of vascular system exploration of
4000 lm.

The 2-D images were processed with MeshPore, a customized
software specifically developed for processing vectorial images
(Perré, 2005) from a specific data structure. This multi-purpose
software is based on the concept of directed line segments and is
designed to be able to handle any shape (including closed or open
contours), change the number of nodes in each chain, distinguish
contour structure and the location of geometrical points, merge
or split chains, re-sample a chain to give a more refined or coarser
spatial resolution and so on. The basic elements are points and
nodes and a contour consists of a chain of nodes, each one pointing
towards a specific geometrical point. Each point carries geometri-
cal information whereas each node carries connection information.
This results in a very flexible structure, as the point properties are
clearly distinct from the node properties. A vessel contour is de-
fined by a chain, which consists of a set of connected nodes. The
first node of each chain is stored in a table, which therefore con-
tains the complete chain list for the image. Each node in a chain
‘‘knows” the previous node (= 0 for the first node) and the next
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Fig. 1. Image acquisition and treatment. (1A) image acquisition system; (1B) initial image and delimitation of the region of interest (black square); (1C) vessel network
demarcation using MeshPore; (1D) final 2D image.
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node (= 0 for the last node). In the case of a closed chain, the first
and last nodes point towards the same point.

As our image collection contained excessive number of vessels,
a particular region of interest (ROI) was selected. The macro lan-
guage available in MeshPore allowed easy selection of the same
ROI on all images, as well as certain automatic instructions. The
main steps of image acquisition and treatment are depicted in
Fig. 1.

Due to minute sample movements during successive micro-
tome cuts, a feature has been added to MeshPore to allow for small
translations of all chains of an image, in order to align successive
planes. Together with the pixel size and the definition of the vessel
contour, the global accuracy of our procedure may be estimated at
±2 lm.

2.2. Reconstruction procedure

The LB scheme is based on generation of a 3D lattice with a dis-
tinction between pore and solid. As the LB lattice should remain
cubic, a certain level of interpolation is required between two suc-
cessive images, as a function of the desired spatial resolution in the
xy plane. Note that the vectorial description of the contours pro-
vided by MeshPore permits a spatial resolution that is independent
of the initial bitmap image resolution.

Constructing the true 3D morphology from the collection of n
successive planes requires two crucial steps:

1. Finding the connectivities between the contours of successive
planes

2. Choosing a method of interpolation between planes to generate
a cubic lattice
For this purpose, a 3D version of MeshPore, which allows any
number of slices to be loaded, has been developed. All the Mesh-
Pore 2D features were retained for each selected slice, so that the
final data set consisted of a collection of planes, each one defined
by a collection of chains. The graphical facilities implemented in
MeshPore 3D used the concept of quaternions to compute the
projections.

Numerous criteria can be imagined to find the connectivities
between contours. Rather than a criterion based on the common
surface area between two contours (Kwon et al., 2003), we chose
to use a more demanding criterion i.e., that two contours would
be considered as connected if the barycenter of one contour was
included in the other. The reciprocity of the criterion is important,
namely in the case of bifurcations (one vessel of a plane connected
to two vessels of a neighboring plane (upper or lower). We took
advantage of our vectorial data representation and made thorough
use of integral contours in the data processing. For example, fol-
lowing Stokes’s theorem, the barycenter of a closed chain was ob-
tained from the contour integrals:

xbary ¼
1
S

I
C

x2 � dy ð1Þ

ybary ¼ �
1
S

I
C

y2 � dx ð2Þ

Similarly, the Cauchy’s residue theorem was used to determine
if a specific point was inside a closed contour or not. This criterion
was used both to generate the connectivities between contours
and to allocate the solid or pore flag to each point of the lattice.

Once all the connectivities had been computed, all the chains
were organized into clusters. These clusters (set of connected con-
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tours) were built up step by step, until they spread throughout the
whole domain.

In order to stay as close as possible to the real vessel morphol-
ogy, the contours themselves were interpolated before lattice gen-
eration. For each couple of connected contours (initial contours)
from two successive planes, one contour was built in each interpo-
lation plane by creating a chain with the same number of nodes as
the first initial chain. For each node i of the first initial chain, the
best node of the other chain was chosen to form a generatrix of
the vessel pathway. This node was indeed the one whose point
was nearest to the plane formed by the two barycenters of the ini-
tial chains and the point of node i. The point of the current node of
the interpolated chain is simply the intersection of the interpola-
tion plane with this generatrix (Fig. 2).

An example of this interpolation procedure is shown in Fig. 3.
This simple configuration depicts the interpolation obtained in
two common cases:

� One single contour, slightly deformed and shifted from one
plane to the other.
� Two contours connected to a single and larger contour on the

upper plane.
Fig. 2. Strategy used to interpolate 3-D morphology from connected chains of two
successive initial planes.

Fig. 3. Example of interpolation between two initial planes: two clusters with one bifur
initial planes (top, right) and the 3D morphology obtained after grid generation (bottom
2.3. Example of morphology

A set of four vessels was chosen as case study for the modeling
work. The interest of the selected zone was based on two major
features:

� The presence of vessel lines of different and variable
sections,
� The existence of two bifurcations: one vessel line diverging into

two sub-lines, which then merge again into a single vessel

The resulting morphology is depicted in Fig. 4. To ensure easy
analysis and discussion of the capillary invasion simulated with
this morphology, the vessels were numbered and vessels 4a and
4b indicate the bifurcation of vessel 4.
3. Shan–Chen Lattice Boltzmann approach

In the LB context, the Navier–Stokes equation is not imple-
mented directly, as the fluid is described at the particle kinetics le-
vel. Particle presence probability density functions (PPDF) fi are
defined, where fið~r; tÞ is the probability of finding a particle exhib-
iting velocity ~ci at point~r and date t. A lattice is defined from the
discrete velocity set f~cig, where ~ci velocities are tuned to allow a
particle to jump from one node of the lattice to a neighboring node.
We chose a three-dimensional lattice which exhibited 19 veloci-
ties: the D3Q19 lattice (Table 1).

Fluid density q and velocity~u are provided in a relatively simple
way by equations:

q ¼
X

i

fi ð3Þ

q~u ¼
X

i

fi~ci ð4Þ

The main idea of the Lattice Boltzmann approach is to imple-
ment both collisions between particles and free streaming from
one collision to the next. To do this we chose the so-called LBGK
model in which the fi fuctions obey a linear approximation of the
general lattice Boltzmann equation:

fið~r þ dt~ci; t þ dtÞ � fið~r; tÞ ¼ �
1
s

fi � f eq
i

� �
ð5Þ
cation (top, left), calculated chains of nine interpolation planes between these two
).



Fig. 4. Re-building of birch anatomy. Numbers are attributed to the vessels. Note that vessel 4 exhibits two bifurcations (divergent and convergent) and the resulting sub-
vessels are termed vessel 4a and 4b.

Table 1
The D3Q19 lattice velocities.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

~ci 0 1 �1 0 0 0 0 1 1 �1 �1 1 1 �1 �1 0 0 0 0
0 0 0 1 �1 0 0 1 �1 1 �1 0 0 0 0 1 1 �1 �1
0 0 0 0 0 1 �1 0 0 0 0 1 �1 1 �1 1 �1 1 �1
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The left member is implemented through a streaming step and
the right member is a relaxation term, where s is the relaxation
time: inter-particle collisions drive fi towards an equilibrium value
f eq
i , which is deduced from macroscopic quantities:X

i

f eq
i ¼ q ð6Þ

X
i

f eq
i
~ci ¼ q~u ð7Þ

X
i

f eq
i ciacib ¼ quaub þ qc2

s dab ð8Þ
X

i

f eq
i ciacibcic ¼ qc2

s ðucdab þ uadcb þ ubdacÞ ð9Þ

The value of s is fixed at s = 1. Dirichlet boundary conditions
were imposed by applying the well-known bounce-back boundary
conditions: particles reaching a solid wall are simply reflected in
the direction from which they came.

Fluid–fluid interactions are required when performing multi-
phase flow simulations. Several Lattice Boltzmann models for mul-
tiphase flow simulations have been proposed. These include the
Gunstensen chromodynamic model (Gunstensen et al., 1991), the
free energy-based approach for both liquid/vapor systems (Swift
et al., 1995) and binary fluids (Swift et al., 1996), proposed by Swift
et al, intermolecular interaction-based model of He et al. (1999),
the Inamuro approach (Inamuro et al., 2004) and the Lee and Lin
scheme (Lee and Lin, 2005). We chose the pseudo-potential ap-
proach (Shan and Chen, 1993)for the present work. A modified
fluid velocity is computed in which fluid–fluid forces F

!
FF occur:

q~u0 ¼ q~uþ sF
!

FF ð10Þ

The modified velocity~u0, provided by Eq. (10), replaces~u in Eqs.
(7)–(9). The interaction forces are deduced from interactions tak-
ing place between neighboring particles:

F
!

FFð~rÞ ¼ wð~rÞ
X

i

GFF
i wð~r þ dt~ciÞ ð11Þ

The function w = 1 � e�q can be interpreted as an effective den-
sity. Parameter GFF

i is an interaction parameter, the value of which
depends on the direction, following:

GFF
i ¼

2GFF k~cik ¼ 1
GFF k~cik ¼

ffiffiffi
2
p

(
ð12Þ

The scalar parameter GFF must be adjusted to produce a liquid–
vapor phase transition.
We implemented this model in a parallel code (FORTRAN and
MPI routines) called FlowPore (Frank and Perré, 2010). We vali-
dated this tool by performing simulations in a cubic box to com-
pute maximum and minimum values qmin and qmax of
equilibrium q fields for various values of GFF.

As can be seen in Fig. 5, our results match well-known results in
the literature (Shan and Chen, 1993; Yuan and Schaefer, 2006). To
ease the definition of the initial state in practical cases, we tuned
the fitting expressions for qmin and qmax as a function of GFF. These
expressions were provided by equation:

qmin=max ¼
qc GFF < GFF

c

qc þ AðGFF � GFF
c Þ

a GFF P GFF
c

(
ð13Þ

The critical point is identified as qc = 0.708 and GFF
c ¼ 0:111 and

the parameters are A = �1.2289 and a = 0.234627 for qmin and
A = 14.9537 and a = 0.68383 for qmax.

The value of surface tension r was deduced from numerical
experiments. The numerical setup was defined as follows: a drop
was placed at the center of a cubic box, assuming periodic bound-
ary conditions for each direction. Various drop diameters and val-
ues of GFF were used. As indicated previously (Shan and Chen,
1993), the pressure difference across a liquid–vapor interface
obeys the Laplace law. For a given value of GFF, the value of r is de-
duced from the slope of the linear fit of DP as a function of 1

R, where
R is the radius of the drop. We tuned following expression for r as a
function of GFF:

r ¼ 3:059GFF � 0:368 ð14Þ

In the same way, fluid–solid interactions are introduced when
solid nodes are present, through a force term F

!
FS (Martys and Chen,

1996; Raiskinmäki et al., 2002) which leads to the final expression
of the modified velocity:

q~u0 ¼ q~uþ sðF
!

FF þ F
!

FSÞ ð15Þ

Vector F
!

FS is expressed as:

F
!

FSð~rÞ ¼ wð~rÞ
X

i

GFS
i Sð~r þ dt~ciÞ ð16Þ

The value of parameter Sð~rÞ is 1 if the point~r is within the solid
phase, and 0 otherwise. The fluid–solid interaction parameter GFS

i

depends on the direction according to:
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GFS
i ¼

2GFS k~cik ¼ 1

GFS k~cik ¼
ffiffiffi
2
p

(
ð17Þ

The value of the static contact angle at the solid–liquid–vapor
contact line is dependent both on GFF and GFS, as it emerges from
competition between the fluid–solid and fluid–fluid interactions.
We estimated the value of the static contact angle by performing
systematic 3D simulations for various (GFF, GFS) pairs (Fig. 6). As
indicated in the Fig. 6 (inset), we defined a 3D box and placed
two solid walls on opposite sides of ~ex direction, assuming periodic
boundary conditions in both other directions ~ey and ~ez. A liquid
layer is placed between two y = cste planes, and the simulation is
carried out until equilibrium is reached. The value of the contact
angle can then be evaluated.

As can be seen in Fig. 6, a wide range of hc values is available.
However, both GFS and GFF have to be tuned if a fixed value of hc

is required.
Despite their extreme simplicity, pseudo-potential-based mod-

els have been successfully applied to numerous concrete cases,
especially multiphase flow in porous media (Vogel et al., 2005;
Sukop and Or, 2004; Sukop et al., 2008; Hatiboglu and Babadagli,
2008) and microfluidics (Yu et al., 2007; Sbragaglia et al., 2006).
Such approaches can be easily and efficiently implemented, espe-
cially with a parallel computer (Pan et al., 2004). Thus the pseu-
do-potential Lattice Boltzmann approach seems, to date, to be
the most convenient method for performing multiphase flow sim-
ulations in virtual wood samples.
4. Capillary invasion of a wood sample

4.1. Numerical setup

The purpose of the present work was to study the purely capil-
lary invasion of a wood sample. It was therefore crucial to elimi-
nate artificial effects on imbibition phenomena, especially within
the liquid bath. We did this by following the method proposed
by Chibbaro et al. (2009) to simulate an infinite liquid bath. We de-
fined ~ez as the imbibition direction, and nz as the size, in ~ez direc-
tion, of the grid which defined the sample anatomy. We assumed
that n0z ¼ 2nz was the size of the effective simulation box in the
~ez direction. The wood sample was placed between planes
z = nz + 1 and z = nz

0
, and the nodes between planes z = 1 and

z = nz were assumed to be fluid nodes. Periodic boundary condi-
tions were assumed throughout. First, a liquid layer was placed
in the simulation box without any solid node. This initial layer
was placed between planes z = 20 and z = nz + 20, the initial value
of ~u was fixed at ~u ¼ ~0, the initial values of f eq

i were deduced from
fields q and ~u, and the initial values of fi were set at f eq

i .
At this point, the system is simulated through 20,000 iterations

to ensure equilibrium. In a second step, the solid nodes are intro-
duced, and the capillary imbibition starts and is computed until
250,000 iterations. The numerical setup is summarized in Fig. 7.

Both distances and time are expressed in lattice units, as grid
step and time step are fixed to the unit. Therefore, in LB, the effect
of time step cannot be analysed separately from the grid space. If
the grid space is modified, a scaling in space and in time should
be performed to compare the results. This point was checked on
a simple configuration: we performed a simulation of capillary
imbibition of an ideal bifurcation and two grid sizes (nx = 35,
ny = 35 and nz = 350 and nx = 50, ny = 50 and nz = 500). From the



Fig. 7. Numerical setup for purely capillary imbibition of a porous medium.
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computed results, we extracted rising curves in both sub-vessel 1
and sub-vessel 2 just in the same way. We observed the same
behavior in the smaller grid and in the larger one. A curve crossing
point at height zc could be identified, and zc/nz has the same value
in both cases. As a conclusion, we can say that results are grid-
Fig. 8. Capillary invasion of the birch sample for different time values (lattice units). The d
coalescence of the resulting liquid columns (t = 240,000).
independent, provided the change in grid size is not sufficient to
significantly change the grid Reynolds’s number.
4.2. Results

Numerical experiments on capillary imbibition were carried out
on the virtual birch sample anatomy described earlier (Fig. 4). The
previously described simulation process was followed. We used
the values GFF = 0.14 and GFS = 0.08 to impose a wetting solid phase.
System dimensions were nx = 71, ny = 133, nz = 717 and nz0 ¼ 1434
which produces a numerical box with more than 6 � 106 lattices
nodes. Using 64 processor cores of our Infiniband-based cluster, a
typical run requires approximately 40 h to perform 250,000
iterations.

As can be seen in Fig. 8, the liquid/vapor interfaces exhibit me-
nisci and, as expected, the liquid phase invades the vascular sys-
tem, driven by wetting forces. Whereas imbibition within vessels
1–3 is a relatively common phenomenon as it occurs in channels
close to cylindrical tubes, the case of vessel 4 is very interesting.
When the liquid phase reaches the first bifurcation, the propaga-
tion interface is split into two menisci (Fig. 8:t = 90,000). After this
step, the imbibition velocities within vessels 4a and 4b are differ-
ent. Capillary invasion is slower in the larger vessel (4b) than in
the narrower one (4a) (Fig. 8: t = 140,000). Then, when the liquid
phase in vessel (4a) reaches the second bifurcation, its further
propagation is stopped until vessel (4b) has been fully invaded.
At this step, the 4a and 4b menisci coalesce and imbibition of the
ates were chosen to emphasize splitting of the meniscus in vessel 4 (t = 90,000) and
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upper part of vessel 4 can continue in the same way as in the other
vessels (Fig. 8:t = 240,000). To confirm these phenomena, we
tracked the liquid–vapor interface throughout the simulation:

The interface was traced inside both the 4 � 4a � 4 vessel path
and the 4 � 4b � 4 vessel path. The density value q was extracted
along a polyline defined by contour barycenters, as computed by
MeshPore 3D, and the meniscus position was defined by curvilinear
abscissa where the value q ¼ ðqLþqV Þ

2 . As can be seen in Fig. 9, when
the first bifurcation is reached, capillary invasion in the 4a sub-ves-
sel becomes faster than in the 4b sub-vessel.

5. Discussion

It is well-known that, in the absence of gravity, capillary imbi-
bition of a tube is dominated by a mechanism of competition be-
tween capillary forces and viscous forces (Chibbaro et al., 2009).
In the simple case of a cylindrical tube, the assumption that inertia
is negligible after a very short transitory period leads to Wash-
burn’s law (Washburn, 1921):

h2 ¼ rd cos hc

4g
t ð18Þ

where h is the height of the liquid phase inside the tube, d is the
tube diameter, g is the viscosity of the fluid, and hc is the contact an-
gle at the liquid/solid/gas triple line. Queries arise when the Eq. (18)
is compared with the simulation results. According to Washburn’s
law, the speed of capillary invasion should increase with tube diam-
eter. However, in our simulation, the behavior of the liquid phase
after the bifurcation (Fig. 8) was in contradiction with this law.

We addressed this point by performing numerical experiments
with an ideal bifurcation. We defined the solid phase as a cylindri-
cal tube in which a flat longitudinal wall was inserted (Fig. 10: in-
set). The wall was inserted in a yz plane, the position of the wall
was defined as px and the width was nx/10. The fluid–fluid interac-
tion parameters were fixed at GFF = 0.14, and the wetting proper-
ties of the wall were exactly the same as for the tube, the
interaction parameters being GFS = 0.08 for each solid node. The
same approach, as before, was applied to define the system dimen-
sions and simulation procedure, (Fig. 7) and to set the following
parameters at nx = 50, ny = 50, nz = 500, and, as a consequence,
n0z ¼ 1000. Two different cases were tested: case a:px = nx/3 and
case b:px = nx/2. The height of the liquid–vapor interface within
sub-vessels 1 and 2 was recorded and the computed results are
shown in following figure:

The first stage of imbibition involves the classical capillary inva-
sion of a cylindrical tube, and obeys Washburn’s law (Fig. 10: curve
c). All the curves are superimposed at this stage, as the tube diam-
eter is the same for both numerical simulations. When the menis-
cus reaches the wall (Fig. 10: first annotation), the subsequent
behavior depends on px. In the case of equal-sized sub-vessels
(px = nx/2), the curves of sub-vessel 1 and sub-vessel 2 remain
superimposed until the last iteration (Fig. 10: curves b1 and b2) be-
cause the imbibition velocity is the same in both sub-vessels. It can
be seen that imbibition briefly accelerates just after splitting of the
meniscus. It is clear that new solid nodes increase the driving
forces whereas narrower vessels increase viscous dissipation.
Washbrun’s law is a consequence of the competition between
these contradictory effects. However, when the initial meniscus
reaches the transverse wall, a transitory regime takes over, in
which the meniscus (capillary forces) is of small hydraulic diame-
ter while the flow (viscous forces) still occurs in a large diameter.
The other test case (px = nx/3) provides information about the influ-
ence of the relative widths of the sub-vessels. As can be seen on
curves a1 and a2 in Fig. 10, the imbibition velocities are identical
until the meniscus reaches the wall, but exhibit different patterns
after this step. As explained previously, the acceleration is greater
in the narrow sub-vessels than in the larger single vessel. During
this transient stage, in the same way as in the real bifurcation
within the virtual birch sample (Fig. 8: t = 140,000), Washbrun’s
law no longer holds. Later in the simulation, the height of sub-ves-
sel 2 exceeds the height of sub-vessel 1 (Fig. 10: second annota-
tion): the viscous forces and the capillary forces are again
expressed in the same diameter, so that Washburn’s law applies
again.

These results provide a clear interpretation of the counter-intui-
tive evolution previously observed in the virtual birch sample. When
the liquid phase reaches the first bifurcation of the 4th vessel, the
velocity inside the 4th (a) sub-vessel increases strongly as the tran-
sitory regime takes place. However, the long-term behavior is not
observed in this case, as the liquid column in the 4th (b) sub-vessel
coalesces with the liquid column in the 4th (a) sub-vessel before this
long-term behavior can occur. Consequently, only the transitory re-
gime would be observed in our case of wood morphology.
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6. Conclusion

In this paper, we have proposed a systematic approach for sim-
ulating multiphase flows in the vascular system of wood. Sample
anatomy was determined from successive microtome sections
and microscope images. The Meshpore software was applied to
generate the contours of vessels in a vectorial way, suitable for
3D interpolation and lattice generation of any resolution. Interme-
diate slices were generated between real sections using an interpo-
lation scheme to improve resolution in the longitudinal direction
and 2D grids of points were deduced from the final set of slices.
The resulting anatomy was a 3D cubic lattice, which provided solid
boundaries for a Shan–Chen type Lattice Boltzmann scheme.

This framework was then used to simulate capillary invasion by
means of a customized parallel numeric code, FlowPore. Special
attention was given to phenomena occurring when a meniscus
reached a bifurcation, i.e. where a vessel split into two sub-vessels.
The observed imbibition in the narrower vessel was faster than in
the larger one, and in contradiction with Washburn’s law. Numer-
ical experiments, involving an ideal bifurcation in a cylindrical
tube, clearly proved that this behavior was transitory, and that it
occurred near the bifurcation where the capillary forces and vis-
cous forces were not expressed in the same hydraulic diameter.

In the future, this chain of tools could be applied to study the
vascular system of different plants. For this purpose, micro-tomog-
raphy is certainly a better solution than our tedious method to col-
lect the 3-D morphology. The experimental validation is also a
crucial concern. The challenge here is the ability of a 3-D imaging
system to be fast enough to follow the water menisci during capil-
lary invasion: NMR imaging or ultra-fast tomography are possible
candidates.
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